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Abstract —This paper presents a review of the numerical methods for the
analysis of the homogeneous and inhomogeneous, isotropic and aniso-
tropic, microwave and optical dielectric waveguides with arbitrarily-shaped
cross sections. The characteristics of various methods are compared, and a
set of qualitative criteria to guide the selection of an appropriate method
for a given problem is proposed. The main approaches discussed are those
of point matching, integral equations, finite difference, and finite element.

I. INTRODUCTION

HE RAPID GROWTH in recent years in the millime-

ter-wave, optical fiber, and integrated optics arts has
included the introduction of arbitrarily-shaped diclectric
waveguides, which in many cases also happened to be
arbitrarily inhomogeneous and/or arbitrarily anisotropic.
This variety occurs either as a design preference or due to
actual manufacturing processes of dielectric waveguides
operating in the microwave-to-optical frequency spectrum.
Most of such cases of waveguide arbitrariness do not lend
themselves to analytical solutions. Many scientists have,
therefore, given their attention to the project of con-
structing numerical methods that solve the arbitrarily-
shaped dielectric waveguide, which may be anisotropic
and /or transversely inhomogeneous. In this paper, an at-
tempt is made to provide a brief outline and selected
bibliography of such contributions presented in the litera-
ture.

In varying degrees, modern developments in the dielec-
tric and optical waveguide arts have benefited from the
already matured metallic waveguide art. It is specifically
noticeable that most of the numerical methods to solve the
former problems were developed by adapting the corre-
sponding approaches that proved successful in solving the
latter. It seems appropriate, therefore, to refer to two
review papers, by Davies [1] and Ng [2], of the metallic
waveguide numerical methods, which may help establish
certain useful analogies with this review.

After defining the problem and characterizing the meth-
ods of solution in Section II, the paper devotes Sections
III-V to the numerical methods that solve the isotropic
homogeneous, the isotropic inhomogeneous, and the aniso-
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tropic guides, respectively. Section VI proposes a set of
qualitative criteria to judge such methods. As the paper
title indicates, only the methods which are capable of
solving the arbitrarily-shaped guide will be considered here,
although a number of numerical methods have been devel-
oped for specific cross-sectional shapes, for example, the
circular fiber with radially varying refractive index [3].

II. CHARACTERIZATION OF THE PROBLEM AND THE
METHODS OF SOLUTION

We are considering here the methods for solving numeri-
cally the multilayer longitudinally-uniform dielectric wave-
guide of arbitrarily-shaped cross section. As our most
general case, the guide is anisotropic and transversely
inhomogeneous. The method should find a numerical solu-
tion to Maxwell’s equations

Vsz_a_B_’ va:a_D

at t ()
valid over each layer (region) R, and subject to the
boundary conditions, namely, the tangential field compo-
nents must be continuous across the boundary C, between
any two layers / and i +1. A time variation of exp(— jwt)
is adopted and omitted throughout the paper.

The numerical methods of solving (1) differ in the fol-
lowing respects. Firstly, some methods are aimed at direct
numerical solution of (1), their equivalent integral forms,
or any of their special-case reduced forms; but the majority
of methods aim at transforming such differential or in-
tegral equations, through various mathematical modeling
schemes, into a system of linear equations solvable by
standard matrix techniques. Secondly, the method may
approximate the field over each dielectric layer of the
waveguide, either at discrete points, employing finite dif-
ferences, or by an expansion valid over the entire layer,
such as in the point-matching method, or by a set of
expansions, where each is valid over a subregion of each
dielectric layer, such as in the finite-element method.
Thirdly, the methods differ in the way they deal with the
infinite extent of the waveguide cross section. For example,
the point-matching and some finite-element approaches
take advantage of the fact that the field decays in the radial
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direction away from the guide, while some other finite-ele-
ment approaches impose various kinds of boundary condi-
tions at some optimized distance far enough from the
guide.

In order to improve the accuracy or efficiency of a
numerical technique, it proved advantageous in some cases
to combine two or more numerical methods in the solution.
For example, a point-matching method may be supple-
mented by a moment method to improve the accuracy of
matching the fields along the boundary C. Also, a varia-
tional formulation may be useful to attach to several
approximation techniques as a part of the error minimiza-
tion procedure. It is interesting to note that many authors
have done just that, and several hybrid approaches have
been elegantly constructed. For us to classify such ap-
proaches into groups, with as little confusion as possible,
we have chosen to identify each approach according to its
constituent method which is either dominant in the solu-
tion procedure or was responsible for the breakthrough in
the literature.

III.

In the special case of an isotropic homogeneous wave-
guide, (1) can be reduced into the scalar wave equation

Vi%+kio=0 2)

where v ? is the transverse Laplacian operator, ¢ is the
scalar field E, or H,, and k, is the wavenumber of the ith
layer defined by

THE IsoTrRoPIC HOMOGENEOUS WAVEGUIDE

kOnt>B
k0n1<B

where k, = w(j1q€,)? is the free-space wavenumber, B is
the propagation constant, and n, is the refractive index of
layer i.
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A. The Point - Matching Method

The point-matching method is one of the oldest and
simplest techniques for the solution of the isotropic homo-
geneous dielectric waveguide with arbitrary cross section.
Its application to the two-layer rectangular cross-section
guide was shown first by Goell [4]. The method maintains
that a good approximation to the scalar field in (2) is

Ea= 3 A,sin(nb+u)J,(kir)exp(jBz) (4a)

n=0
Hz1= Z Bn Sin(n0+ uh)Jn(klr)exp(jBZ) (4b)
n=90

in the interior region R;, and

E22= i CnSin(n0+ue)Kn(er)exp(leZ) (4C)

n=20
o

H22= Z DnSin(n0+uh)Kn(er)exp(jIBZ) (4d)
n=90

in the infinite exterior region R,. By matching the tangen-
tial fields at optimally selected N points around the
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boundary, truncating the expansions in (4) at n =N, we
obtain a system of the linear equations in the unknown
coefficients 4,, B,, C,, and D,. By applying the condition
of nontrivial solution, a characteristic equation in 8 is
obtained and solved for possible eigenvalues. The original
matrix equation is then solved for each mode eigenfunction
by standard matrix techniques.

Improved results were reported by Cullen et al. [5] who
followed Goell’s approach, but rotated the grid of equi-
angularly-spaced matching points in order to place a
matching point at the corner of a rectangular dielectric
waveguide. Later, Cullen and Ozkan [6] showed that the
fundamental mode fields, obtained by point matching,
yield satisfactory results even when used to compute the
coupling coefficients between two rectangular rods. Again,
Goell’s approach was employed by Yamashita et al. [7] to
obtain a modal analysis of the elliptical, egg-shaped, and
chipped-circle fibers, and by Saad [8] to resolve a dispute
among various analytical solutions concerning the higher
order mode cutoff of the elliptical fiber with large ec-
centricity.

The above point-matching approach was extended by
Yamashita et al. [9] to solve the composite (three-region)
dielectric waveguide, and was later modified to treat some
cases of composite nonconvex shapes [10]. In the above
attempts [4]-[9], the accuracy of the point-matching solu-
tion was proven either experimentally or by comparison
with other confirmed solutions.

When the point-matching approach was originally pro-
posed by Goell, there were many unanswered questions
about its physical justification, the legitimacy of its
straightforward unconditional application, the validity of
expansions such as (4) in representing the interior and
exterior solutions everywhere on C, the convergence of its
eigenvalue and eigenfunction solutions to the correct values
as N increases to infinity, and the sufficiency of its accu-
racy to engineering applications.

In addressing these questions, James and Gallett [11]
had examined certain criteria as a basis for the validity and
accuracy of the point-matching method. Expansion (4),
they conclude, is not valid unless the boundary C is
radially single-valued and free from prominent angular
periodicities. An illuminating follow-up discussion on their
claims is given by Bates et al. [12]. Further work by Hafner
and Ballisti [13] proves that the validity of (4) depends on
the structure of region R; rather than the shape of the
boundary C.

B. Variational and Integral Approaches

Here, three phenomena may be utilized. First, a varia-
tional formulation that is “stationary” about the correct
solution may be adopted to minimize the error in field
modeling. Second, by deriving an appropriate integral rep-
resentation of the field, satisfying the boundary conditicns,
is guaranteed. Third, by using a simple trial field or an
expansion, the integral equations are reduced to a set of
linear equations to be solved by standard computer meth-
ods.
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James and Gallet [14] have proven that although some
configurations, like the triangular fiber, may not lend
themselves to an accurate point-matching solution, such
solution can still be useful if included as a trial field in a
variational formulation that utilizes an integral representa-
tion of a correction field.

By implementing the variational technique for the E-field
integral equation, Keuster and Pate [15] obtained a solu-
tion for the fundamental mode. Their dispersion curves,
obtained by assuming a constant trial field within the core,
seem to be accurate only at lower frequencies.

The most powerful and versatile method in this category
may be that of Eyges et al. [16]. By providing an expansion
of the field in terms of appropriate basis functions, such as
(4), in the integral representations, a matrix equation is
formed with elements involving these basis functions in
line integrals that are taken over the boundary C. Thus, the
need to explicitly match the interior and exterior solutions
across C is eliminated. Their paper documents accurate
solutions for several higher order modes in rectangular and
elliptical guides.

C. Combined Integral and Differential Equation
Approaches

An interesting combination of integral and differential
equation approaches was developed by Williams and
Cambrell [17], [18], where an integral equation is derived to
describe the impedance boundary conditions on an aux-
iliary boundary located just outside region R;. Meanwhile,
Maxwell’s equations were transformed into an eigenvalue
matrix equation using the finite-difference method in [17],
and using the moment method in [18].

1V. THE IsoTrROPIC INHOMOGENEOUS WAVEGUIDE

In the case of an isotropic waveguide with transverse
inhomogeneity, the solution is required to satisfy a reduced
form of (1), namely, the vector wave equation

2 2 Ve
v A+koe,(x,y)A—~€—-V-A=O (5)
which may be, for convenience, rearranged into a set of

two coupled second-order differential equations in the
vector potential transverse components 4, and 4,.

A. The Finite- Difference Method

The finite-difference method is the oldest and perhaps
the most commonly used technique for the solution of
boundary value problems [1]. Except for the one-dimen-
sional homogeneous case [17], however, the method has not
been applied to dielectric waveguides until recently. Be-
cause it divides the waveguide cross section into a large
number of subregions, the method lends itself “naturally”
to the solution of inhomogeneous guides.

Decotignie et al. [19] developed a finite-difference
method for the solution of (5). They selected a nonregular
grid so as to place the external boundary conditions (zero
field components, in their choice) as far as desired, without
increasing unnecessarily the number of mesh nodes. The
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finite-difference method was more advantageously defined,
via a variational approach, by Schweig and Bridges [20].
Here, the guide is enclosed in a conducting box which is
sufficiently large so that it does not perturb the modes.
Instead of trying to solve (5), the simpler wave equation (2)
is considered because it is approximately valid over each
subregion. In both applications [19], [20], the authors have
proven one important advantage of the finite-difference
method over the finite-element method, namely, the former
is free from the troublesome problem of “spurious numeri-
cal modes” which are generated by the numerical technique
while they actually do not represent physical modes of the
waveguide.

B. The Finite- Element Method

Despite its short history, the finite-element method has
grown to one that offers probably the most powerful and
efficient numerical solution of the most general (i.e., arbi-
trarily-shaped, inhomogeneous, and anisotropic) optical
waveguide problem. Here, the waveguide cross section is
divided into a large number of triangles (elements), and the
field in each element is represented by a polynomial, then
the field continuity conditions are imposed on all interfaces
between the different elements. By employing a variational
expression for the Maxwell’s equations, or their reduced
forms (2) or (5), an eigenvalue matrix equation is obtained
and solved using standard methods.

While the use of a variational formulation in the finite-
difference method is optional, though preferred, it is a
necessary step in the finite-element method. It is interesting
to note that it is the variational approach that brings close
together the finite-difference and finite-element techniques
[1]. As pointed out in [20], the two techniques become
equivalent for one-dimensional problems and for two-
dimensional problems with rectangular boundaries.

Taking advantage of the fact that the field of the mode
above cutoff decays in the exterior region, Yeh er al. [21]
introduced a finite-element method which incorporates into
the field approximation in the boundary elements an ex-
ponential decay factor, to be determined heuristically. Such
a factor is employed to approximate the infinite exterior
region by an equivalent closed region with imposed
boundary conditions. Their solution, though limited to the
fundamental mode, was demonstrated for numerous shapes
of homogeneous waveguides as well as the diffused channel
waveguide.

At mode cutoff, the exterior field is either constant or
decaying very slowly. While this phenomenon makes the
decay factor modeling [21] impossible or inaccurate at
cutoff, it was alternatively employed by Chiang [22] to
implement a Neumann boundary condition at infinity, and
to seek a new finite-element formulation based on direct
solution of the wave equation at cutoff. By limiting the
solution to small variations in n(x, y), the scalar wave
equation (2) becomes applicable. Also, by assuming homo-
geneous cladding, (2) then, as applied to the exterior re-
gion, reduces to Laplace equation at cutoff. This allows a
much simpler finite-element algorithm [23] to be used,
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which in turn significantly improves the efficiency of mod-
eling the infinite exterior region by a finite region.

C. Semi- Numerical Approaches

The finite-differences and finite-element methods repre-
sent a totally numerical solution that approximately satis-
fies Maxwell’s equations over each of the regions R,. In
contrast, differential and integral equation approaches at-
tempt to find a semi-numerical solution that satisfies
Maxwell’s equations exactly over R; but approximately
over the boundary C. In this class of approaches, Maxwell’s
equations are transformed into an eigenvalue equation
through some formal analytical procedure.

By utilizing' the integral equations of the field scattered
by a dielectric cylinder, and employing the procedure of
the extended boundary condition, Morita [24] solved the
problem of inhomogeneous dielectric waveguide sur-
rounded by free space. The advantage here, as in other
integral formulation approaches, is that the two-dimen-
sional problem is reduced to a one-dimensional problem,
and numerical integration is performed only over the
boundary C.

Schelkunoff [25] has shown that a valid method of
solving Maxwell’s equations for the waveguide problem is
by transforming them first into a set of generalized tele-
graphist’s equations for the mode voltages and mode cur-
rents. Some 25 years later, Ogusu [26] applied such a
method to the inhomogeneous dielectric waveguide by
enclosing it in a hypothetical rectangular electric boundary.
Special application of the method to the Y-shaped homoge-
neous guide was later reported by Shinonaga and Kurazono
[27].

V. THE ANISOTROPIC WAVEGUIDE

In the case of an anisotropic waveguide, one may derive
from (1) the following vector wave equation:
v x([e,]'VXH)-k3H=0 (6)

where [¢,] is the relative permittivity tensor. In this section,
we will consider both the homogeneous and inhomoge-

neous waveguides, and review available solutions for (1)
and (6).

A. The Integral Equation Method

Upon using the free-space Green’s function, de Ruiter
{28] transformed (1) into a system of homogeneous integral
equations. The latter is then solved using a combination of
the methods of moments and point matching. The theory is
developed for transversely inhomogeneous waveguide with
complex and frequency-dependent permittivity and per-
meability. The practical case of a lossy, uniaxially aniso-
tropic medium, with a longitudinal extraordinary axis, is
included.

B. The Finite- Element Method

Before surveying the finite-element methods for the an-
isotropic waveguide, a word about spurious solutions is
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due. As pointed out by several authors, spurious solutions
do not exist in the scalar finite-element formulation be-
cause the operator there is positive definite. In contrast, the
anisotropic problem requires a vector finite-element formu-
lation where the operator is no longer positive definite.
This and few other possible causes for the presence of such
spurious solutions were recently investigated by Rahman
and Davies [29].

Mabaya et al. [30] developed a finite-element method for
the case of an anisotropic guide of arbitrary cross section
and index variation, and an anisotropic substrate region.
By considering a diagonal permittivity tensor, a variational
expression for (1) in terms of E, and H, was possible. In
order to model the infinite transverse extent of the wave-
guide, the method imposes an artificial Dirichlet boundary
condition at an optimally-determined distance from the
guide. The authors apparently succeeded in reducing the
number of spurious numerical modes from the eigenvalue
matrix solution (though admittedly the procedure has no
mathematical foundation) by explicitly enforcing the con-
tinuity of the tangential components of the transversal
fields at the boundaries by means of Lagrange multipliers.
Recently, Koshiba er al. [31] extended this approach to the
case of a permittivity tensor with nonzero, but relatively
very small, off-diagonal elements.

In order to deal with arbitrary permittivity tensors,
Rahman and Davies [32] presented a vector H-field formu-
lation of the problem, i.e., a variational expression for (6)
in terms of all three components of H. Because transverse
fields are most important than axial fields in optical diclec-
tric waveguides, even the special cases of [30] and [31]
could be more accurately computed by [32]. To identify
spurious solutions, [32] utilizes an earlier computer experi-
ment finding [33] that such solutions do not satisfy the
relation v-H = 0.

A higher objective is, of course, to eliminate, not just
identify, spurious solutions. Rahman and Davies [29] did
just that by introducing a “penalty function” into the
vectorial finite-element formulation. (This resulted in a
useful by-product, namely, an improved quality of the
physical field solutions.) Another approach was presented
by Koshiba et al. [34], [35], who reformulated the func-
tional for (6) such that v- H = 0 is guaranteed in the whole
interior region.

VL

In judging the appropriateness of various numerical
methods to solve a particular cross-sectional shape, possi-
bly with given inhomogeneity and/or anisotropy, in a
prescribed frequency range, one has to relate the specific
problem to the following assessment criteria.

1) The ability of the method to deal with more than two
homogeneous dielectric layers. Simple point matching, for
example, has been implemented for only two-layer wave-
guides, and extended to composite (three-region) guides.
Although it seems possible to extend the method to treat a
larger number of regions (and perhaps inhomogeneous

CRITERIA FOR METHOD SELECTION
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guides too), the accuracy and efficiency of such an ap-
proach may be uncertain.

2) The accuracy of the method in modeling the dielectric
boundaries and regions. Finite element and finite dif-
ference will yield more accurate results if applied to linear,
rather than curved, boundaries. They will also yield much
better accuracy, compared to point matching, for example,
when applied to nonconvex shapes.

3) The accuracy of the method in specific frequency
ranges. Most methods have one kind or another of built-in
source of error that accelerates near cutoff. The methods
developed specifically for the cutoff frequency, e.g., [22],
do yield, as would be expected, the best results at such a
frequency.

4) The sufficiency of accuracy of the results. For exam-
ple, a method may be perfectly adequate to compute the
characteristics of a single mode, but not adequate to com-
pute the small differences between nearly degenerate modes.

5) The built-in restrictions in the method. For example,
[22] is meant to solve the inhomogeneous fiber, but two key
assumptions in the solution, namely, small variations in
n(x, y) and a homogeneous cladding, will limit the
method’s applicability.

6) Whether the method has a mechanism for generating
spurious numerical solutions, and if so, whether the method
can lend itself to some- modification that could identify
and /or eliminate such spurious solutions.

7) The degree of understanding and involvement re-
quired from the user of the method. While some methods
can be realized as computer programs that solve a wide
range of shapes, inhomogeneity, and/or anisotropy, others
have to be implemented, with varying grades of difficulty,
by the user.

8) The computational efficiency of the method, including
its computer storage requirements.

VIIL

As the state of the dielectric waveguide numerical analy-
sis art reflects progress in the last decade, it still covers
thinly a wide range of new practical waveguide possibili-
ties. The user of such methods does face a decreasing
number of options as the design objectives or manufactur-
ing processes introduce more general cases of inhomogene-
ity and anisotropy. Substantial new work is thus required
to improve existing options of numerical methods, and
create new competitive, if not better, ones.

CONCLUSION
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