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Review of Numerical Methods for the
Analysis of Arbitrarily-Shaped

Microwave and Optical
Dielectric Waveguides

SAAD MICHAEL SAAD, SENIOR MEMBER, IEEE

,4Mrac[ —This paperpresentsa reviewof the numericalmethodsfor the
analysis of the homogeneousand inhomogeneons,isotropic and aniso-
tropic, microwaveand optical dielectric waveguideswith arbitrarily-shaped
crosssections.The characteristicsof variousmethodsare compared,and a
set of qualhath’e criteria to gnide the selection of an appropriate method

for a given problem is proposed. The m@r approaches discussed are those

of point matching, integral equations, finite difference, and finite element.

1. INTRODUCTION

T HE RAPID GROWTH in recent years in the @lime-

ter-wave, optical fiber, and integrated optics arts has

included the introduction of arbitrarily-shaped dielectric

waveguides, w~ch in many cases also happened to be

arbitrarily inhomogeneous and/or arbitrarily anisotropic.

This variety occurs either as a design preference or due to

actual manufacturing processes of dielectric waveguides

operating in the microwave-to-optical frequency spectrum.

Most of such cases of waveguide arbitrariness do not lend

themselves to analytical solutions. Many scientists have,

therefore, given their attention to the project of con-

structing numerical methods that solve the arbitrarily-

shaped dielectric waveguide, which may be anisotropic

and/or transversely inhomogeneous. In this paper, an at-

tempt is made to provide a brief outline and selected

bibliography of such contributions presented in the litera-

ture.
In varying degrees, modern developments in the dielec-

tric and optical waveguide arts have benefited from the

already matured metallic waveguide art. It is specifically

noticeable that most of the numerical methods to solve the

former problems were developed by adapting the corre-

sponding approaches that proved successful in solving the

latter. It seems appropriate, therefore, to refer to two

review papers, by Davies [1] and Ng [2], of the metallic

waveguide numerical methods, which may help establish

certain useful analogies with this review.

After defining the problem and characterizing the meth-

ods of solution in Section II, the paper devotes Sections
III–V to the numerical methods that solve the isotropic

homogeneous, the isotropic inhomogeneous, and the aniso-
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tropic guides, respectively. Section VI proposes a set of

qualitative criteria to judge such methods. As the paper

title indicates, only the methods which are capable of

solving the arbitrarily-shaped guide will be considered here,

although a number of numerical methods have been devel-

oped for specific cross-sectional shapes, for example, the

circular fiber with radially varying refractive index [3].

II. CHARACTERIZATION OF THE PROBLEM AND THE

METHODS OF SOLUTION

We are considering here the methods for solving numeri-

cally the multilayer longitudinally-uniform dielectric wave-

guide of arbitrarily-shaped cross section. As our most

general case, the guide is anisotropic and transversely

inhomogeneous. The method should find a numerical solu-

tion to Maxwell’s equations

aB 8D

‘x E=–x’ ‘X*=X (1)

valid over each layer (region) R,, and subject to the

boundary conditions, namely, the tangential field compo-

nents must be continuous across the boundary Cl between

any two layers i and i +1. A time variation of exp ( – jut)

is adopted and omitted throughout the paper.

The numerical methods of solving (1) differ in the fol-

lowing respects. Firstly, some methods are aimed at direct

numerical solution of (l), their equivalent integral forms,

or any of their special-case reduced forms; but the majority

of methods aim at transforming such differential or in-

tegral equations, through various mathematical modeling

schemes, into a system of linear equations solvable by

standard matrix techniques. Secondly, the method may

approximate the field over each dielectric layer of the

waveguide, either at discrete points, employing finite dif-

ferences, or by an expansion valid over the entire layer,

such as in the point-matching method, or by a set of

expansions, where each is valid over a subregion of each

dielectric layer, such as in the finite-element method.

Thirdly, the methods differ in the way they deal with the

infinite extent of the waveguide cross section. For example,

the point-matching and some finite-element approaches

take advantage of the fact that the field decays in the radial
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direction away from the guide, while some other finite-ele-

ment approaches impose various kinds of boundary condi-

tions at some optimized distance far enough from the

guide.

In order to improve the accuracy or efficiency of a

numerical technique, it proved advantageous in some cases

to combine two or more numerical methods in the solution.

For example, a point-matching method may be supple-

mented by a moment method to improve the accuracy of

matching the fields along the boundary C. Also, a varia-

tional formulation may be useful to attach to several

approximation techniques as a part of the error minimiza-

tion procedure. It is interesting to note that many authors
have done just that, and several hybrid approaches have

been elegantly constructed. For us to classify such ap-

proaches into groups, with as little confusion as possible,

we have chosen to identify each approach according to its

constituent method which is either dominant in the solu-

tion procedure or was responsible for the breakthrough in

the literature.

III. THE ISOTROPIC HOMOGENEOUS WAVEGUIDE

In the special case of an isotropic homogeneous wave-

guide, (1) can be reduced into the scalar wave equation

v2~+k:@=0 (2)

where v 2 is the transverse Laplacian operator, @ is the

scalar field E= or Hz, and k, is the wavenumber of the i th

layer defined by

112 is the free-space wavenumber, ~ ,iswhere k. = CO(poco)

the propagation constant, and n, is the refractive index of

layer i.

A. The Point-Matching Method

The point-matching method is one of the oldest and

simplest techniques for the solution of the isotropic homo-

geneous dielectric waveguide with arbitrary cross section.

Its application to the two-layer rectangular cross-section

guide was shown first by Goell [4]. The method maintains

that a good approximation to the scalar field in (2) is

Ezl= ~ AHsin(nO + u.) Jn(k1r)exp(J3z) (4a)
~=o

Hz, = ~ B~sin(nO +uh).lH(klr)exp (j&) (4b)
~=()

in the interior region RI, and

EZ2= ~ Cmsin(nfl + ue)Kn(k2r)exp(jBz) (4C)
n=o

HZ2= ~ D~sin(n8+ uh)K. (k2r)exp(jPz) (4d)
~=o

in the infinite exterior region R ~. By matching the tangen-

tial fields at optimally selected N points around the

boundary, truncating the expansions in (4) at n = N, we

obtain a system of the linear equations in the unknown

coefficients A., B., C., and Dm. By applying the condition

of nontrivial solution, a characteristic equation in /3 is

obtained and solved for possible eigenvalues. The original

matrix equation is then solved for each mode eigenfunction

by standard matrix techniques.

Improved results were reported by Cullen et al. [5] who

followed Goell’s approach, but rotated the grid of equi-

angularly-spaced matching points in order to place a

matching point at the corner of a rectangular dielectric

waveguide. Later, Cullen and Ozkan [6] showed that the

fundamental mode fields, obtained by point matching,

yield satisfactory results even when used to compute the

coupling coefficients between two rectangular rods. Again,

Goell’s approach was employed by Yamashita et al. [7] to

obtain a modal analysis of the elliptical, egg-shaped, and

chipped-circle fibers, and by Saad [8] to resolve a dispute

among various analytical solutions concerning the higlher

order mode cutoff of the elliptical fiber with large ec-

centricity y.

The above point-matching approach was extended by

Yamashita et al. [9] to solve the composite (three-region)

dielectric waveguide, and was later modified to treat some

cases of composite nonconvex shapes [10]. In the above

attempts [4]–[9], the accuracy of the point-matching sollu-

tion was proven either experimentally or by comparison

with other confirmed solutions.

When the point-matching approach was originally pro-

posed by Goell, there were many unanswered questions

about its physical justification, the legitimacy of its

straightforward unconditional application, the validity of

expansions such as (4) in representing the interior and

exterior solutions everywhere on C, the convergence of its

eigenvalue and eigenfunction solutions to the correct values

as N increases to infinity, and the sufficiency of its accu-

racy to engineering applications.

In addressing these questions, James and Gallett [11]

had examined certain criteria as a basis for the validity and

accuracy of the point-matching method. Expansion (4),

they conclude, is not valid unless the boundary C is

radially single-valued and free from prominent angular

periodicities. An illuminating follow-up discussion on their

claims is given by Bates et al. [12]. Further work by Hafner

and Ballisti [13] proves that the validity of (4) depends on

the structure of region RI rather than the shape of the

boundary C.

B. Variational and Integral Approaches

Here, three phenomena may be utilized. First, a varia-

tional formulation that is “stationary” about the correct

solution may be adopted to minimize the error in field

modeling. Second, by deriving an appropriate integral rep-

resentation of the field, satisfying the boundary conditicms,

is guaranteed. Third, by using a simple trial field or an

expansion, the integral equations are reduced to a set of
linear equations to be solved by standard computer meth-

ods.
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James and Gallet [14] have proven that although some

configurations, like the triangular fiber, may not lend

themselves to an accurate point-matching solution, such

solution can still be useful if included as a trial field in a

variational formulation that utilizes an integral representa-

tion of a correction field.

By implementing the variational technique for the E-field

integral equation, Keuster and Pate [15] obtained a solu-

tion for the fundamental mode. Their dispersion curves,

obtained by assuming a constant trial field within the core,

seem to be accurate only at lower frequencies.

The most powerful and versatile method in this category

may be that of Eyges et al. [16]. By providing an expansion

of the field in terms of appropriate basis functions, such as

(4), in the integral representations, a matrix equation is

formed with elements involving these basis functions in

line integrals that are taken over the boundary C. Thus, the

need to explicitly match the interior and exterior solutions

across C is eliminated. Their paper documents accurate

solutions for several higher order modes in rectangular and

elliptical guides.

C. Combined Integral and Differential Equation

Approaches

An interesting combination of integral and differential

equation approaches was developed by Williams and

Cambrell [17], [18], where an integral equation is derived to

describe the impedance boundary conditions on an aux-

iliary boundary located just outside region RI. Meanwhile,

Maxwell’s equations were transformed into an eigenvalue

matrix equation using the finite-difference method in [17],

and using the moment method in [18].

IV. THE ISOTROPIC INHOMOGENEOUS WAVEGUIDE

In the case of an isotropic waveguide with transverse

inhomogeneity, the solution is required to satisfy a reduced

form of (l), namely, the vector wave equation

V2A +k;~r(x, y)A – ~v.A=O (5)

which may be, for convenience, rearranged into a set of

two coupled second-order differential equations in the

vector potential transverse components A. and A}.

A. The Finite- D$ference Method

The finite-difference method is the oldest and perhaps

the most commonly used techuique for the solution of

boundary value problems [1]. Except for the one-dimen-

sional homogeneous case [17], however, the method has not

been applied to dielectric waveguides until recently. Be-

cause it divides the waveguide cross section into a large

number of subregions, the method lends itself “naturally”

to the solution of inhomogeneous guides.

Decotignie et al. [19] developed a finite-difference

method for the solution of (5). They selected a nonregular

grid so as to place the external boundary conditions (zero

field components, in their choice) as far as desired, without

increasing unnecessarily the number of mesh nodes. The

finite-difference method was more advantageously defined,

via a variational approach, by Schweig and Bridges [20].

Here, the guide is enclosed in a conducting box which is

sufficiently large so that it does not perturb the modes.

Instead of trying to solve (5), the simpler wave equation (2)

is considered because it is approximately valid over each

subregion. In both applications [19], [20], the authors have

proven one important advantage of the finite-difference

method over the finite-element method, namely, the former

is free from the troublesome problem of “spurious numeri-

cal modes” which are generated by the numerical technique

while they actually do not represent physical modes of the

waveguide.

B. The Finite-Element Method

Despite its short history, the finite-element method has

grown to one that offers probably the most powerful and

efficient numerical solution of the most general (i.e., arbi-

trarily-shaped, inhomogeneous, and anisotropic) optical

waveguide problem. Here, the waveguide cross section is

divided into a large number of triangles (elements), and the

field in each element is represented by a polynomial, then

the field continuity conditions are imposed on all interfaces

between the different elements. By employing a variational

expression for the Maxwell’s equations, or their reduced

forms (2) or (5), an eigenvalue matrix equation is obtained

and solved using standard methods.

While the use of a variational formulation in the finite-

difference method is optional, though preferred, it is a

necessary step in the finite-element method. It is interesting

to note that it is the variational approach that brings close

together the finite-difference and finite-element techniques

[11. As pointed out in [20], the two techniques become

equivalent for one-dimensional problems and for two-

dimensional problems with rectangular boundaries.

Taking advantage of the fact that the field of the mode

above cutoff decays in the exterior region, Yeh et al. [21]

introduced a finite-element method which incorporates into

the field approximation in the boundary elements an ex-

ponential decay factor, to be determined heuristically. Such

a factor is employed to approximate the infinite exterior

region by an equivalent closed region with imposed

boundary conditions. Their solution, though limited to the

fundamental mode, was demonstrated for numerous shapes

of homogeneous waveguides as well as the diffused channel

waveguide.
At mode cutoff, the exterior field is either constant or

decaying very slowly. While this phenomenon makes the

decay factor modeling [21] impossible or inaccurate at

cutoff, it was alternatively employed by Chiang [22] to
implement a Neumann boundary condition at infinity, and

to seek a new finite-element formulation based on direct

solution of the wave equation at cutoff. By limiting the

solution to small variations in n (x, y), the scalar wave

equation (2) becomes applicable. Also, by assuming homo-

geneous cladding, (2) then, as applied to the exterior re-

gion, reduces to Laplace equation at cutoff. This allows a

much simpler finite-element algorithm [23] to be used,
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which in turn significantly improves the efficiency of mod-

eling the infinite exterior region by a finite region.

C. Semi-Numerical Approaches

The finite-differences and finite-element methods repre-

sent a totally numerical solution that approximately satis-

fies Maxwell’s equations over each of the regions R,. In

contrast, differential and integral equation approaches at-

tempt to find a semi-numerical solution that satisfies

Maxwell’s equations exactly over Ri but approximately

over the boundary C. In this class of approaches, Maxwell’s

equations are transformed into an eigenvalue equation

through some formal analytical procedure.

By utilizing the integral equations of the field scattered

by a dielectric cylinder, and employing the procedure of

the extended boundary condition, Morita [24] solved the

problem of inhomogeneous dielectric waveguide sur-

rounded by free space. The advantage here, as in other

integral formulation approaches, is that the two-dimen-

sional problem is reduced to a one-dimensional problem,

and numerical integration is performed only over the

boundary C.

Schelkunoff [25] has shown that a valid method of

solving Maxwell’s equations for the waveguide problem is

by transforming them first into a set of generalized tele-

graphist’s equations for the mode voltages and mode cur-

rents. Some 25 years later, Ogusu [26] applied such a

method to the inhomogeneous dielectric waveguide by

enclosing it in a hypothetical rectangular electric boundary.

Special application of the method to the Y-shaped homoge-

neous guide was later reported by Shinonaga and Kurazono

[27].

V. THE ANISOTROPIC WAVEGUIDE

In the case of an anisotropic waveguide, one may derive

from (1) the following vector wave equation:

v x([~r]-% xH)--k:H=O (6)

where [c,] is the relative permittivity tensor. In this section,

we will consider both the homogeneous and inhomoge-

neous waveguides, and review available solutions for (1)

and (6).

A. The Integral Equation Method

Upon using the free-space Green’s function, de Ruiter

[28] transformed (1) into a system of homogeneous integral

equations. The latter is then solved using a combination of

the methods of moments and point matching. The theory is

developed for transversely inhomogeneous waveguide with

complex and frequency-dependent permittivit y and per-

meability. The practical case of a lossy, uniaxially aniso-

tropic medium, with a longitudinal extraordinary axis, is

included.

B. The Finite-Element Method

Before surveying the finite-element methods for the an-

isotropic waveguide, a word about spurious solutions is

due. As pointed out by several authors, spurious solutions

do not exist in the scalar finite-element formulation be-

cause the operator there is positive definite. In contrast, the

anisotropic problem requires a vector finite-element formu-

lation where the operator is no longer positive definite.

This and few other possible causes for the presence of such

spurious solutions were recently investigated by Rahman

and Davies [29].

Mabaya et al. [30] developed a finite-element method for

the case of an anisotropic guide of arbitrary cross section

and index variation, and an anisotropic substrate region.

By considering a diagonal permittivity tensor, a variational

expression for (1) in terms of E= and Hz was possible. In

order to model the infinite transverse extent of the wave-

guide, the method imposes an artificial Dirichlet boundary

condition at an optimally-determined distance from the

guide. The authors apparently succeeded in reducing the

number of spurious numerical modes from the eigenvalue

matrix solution (though admittedly the procedure has lno

mathematical foundation) by explicitly enforcing the con-

tinuity of the tangential components of the transversal

fields at the boundaries by means of Lagrange multipliers.

Recently, Koshiba et al. [31] extended this approach to the

case of a perrnittivity tensor with nonzero, but relatively

very small, off-diagonal elements.

In order to deal with arbitrary perrnittivity tensors,

Rahman and Davies [32] presented a vector II-field formu-

lation of the problem, i.e., a variational expression for (6)

in terms of all three components of H. Because transverse

fields are most important than axial fields in optical dielec-

tric waveguides, even the special cases of [30] and [31]

could be more accurately computed by [32]. To identify

spurious solutions, [32] utilizes an earlier computer experi-

ment finding [33] that such solutions do not satisfy the

relation v. H = O.

A higher objective is, of course, to eliminate, not just

identify, spurious solutions. Rahman and Davies [29] did

just that by introducing a “penalty function” into the

vectorial finite-element formulation. (This resulted in a

useful by-product, namely, an improved quality of the

physical field solutions.) Another approach was presented

by Koshiba et al. [34], [35], who reformulated the func-

tional for (6) such that v. H = O is guaranteed in the whole

interior region.

VI. CRITERIA FOR METHOD SELECTION

In judging the appropriateness of various numerical

methods to solve a particular cross-sectional shape, possi-

bly with given inhomogeneity arid/or anisotropy, in a

prescribed frequency range, one has to relate the specific

problem to the following assessment criteria.

1) The ability of the. method to deal with more than two

homogeneous dielectric layers. Simple point matching, for
example, has been implemented for only two-layer wave-

guides, and extended to composite (three-region) guides.

Although it seems possible to extend the method to treat a

larger number of regions (and perhaps inhomogeneous
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guides too), the accuracy and efficiency of such an ap-

proach may be uncertain.

2) The accuracy of the method in modeling the dielectric

boundaries and regions. Finite element and finite dif-

ference will yield more accurate results if applied to linear,

rather than curved, boundaries. They will also yield much

better accuracy, compared to point matching, for example,

when applied to nonconvex shapes.

3) The accuracy of the method in specific frequency

ranges. Most methods have one kind or another of built-in

source of error that accelerates near cutoff. The methods
developed specifically for the cutoff frequency, e.g., [22],

do yield, as would be expected, the best results at such a

frequency.

4) The sufficiency of accuracy of the results. For exam-

ple, a method may be perfectly adequate to compute the

characteristics of a single mode, but not adequate to com-

pute the small differences between nearly degenerate modes.

5) The built-in restrictions in the method. For example,

[22] is meant to solve the inhomogeneous fiber, but two key

assumptions in the solution, namely, small variations in

n (x, y) and a homogeneous cladding, will limit the

method’s applicability.

6) Whether the method has a mechanism for generating

spurious numerical solutions, and if so, whether the method

can lend itself to some modification that could identify

and/or eliminate such spurious solutions.

7) The degree of understanding and involvement re-

quired from the user of the method. While some methods

can be realized as computer programs that solve a wide

range of shapes, inhomogeneity, and/or anisotropy, others

have to be implemented, with varying grades of difficulty,

by the user.

8) The computational efficiency of the method, including

its computer storage requirements.

VII. CONCLUSION

As the state of the dielectric waveguide numerical analy-

sis art reflects progress in the last decade, it still covers

thinly a wide range of new practical waveguide possibili-

ties. The user of such methods does face a decreasing

number of options as the design objectives or manufactur-

ing processes introduce more general cases of inhomogene-

ity and anisotropy. Substantial new work is thus required

to improve existing options of numerical methods, and

create new competitive, if not better, ones.
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